Maltitol Solution

1 Nonproprietary Names

BP: Liquid maltitol

PhEur: Maltitolum liquidum USPNF: Maltitol solution

2 Synonyms

E965; hydrogenated glucose syrup; Finmalt L; Lycasin HBC; Lycasin 80/55; Maltisorb 75/75; Maltisweet 3145; maltitol syrup.

3 Chemical Name and CAS Registry Number

Maltitol solution [9053-46-7]

4 Empirical Formula Molecular Weight

The PhEur 2002 describes liquid maltitol as an aqueous solution of a hydrogenated, partly hydrolyzed starch, with not less than 68% w/w of solid matter and not more than 85% w/w. This is composed of a mixture of mainly D-maltitol ($\geq 50\%$ w/w), D-sorbitol ($\leq 8\%$ w/w), and hydrogenated oligo- and polysaccharides, all quoted on an anhydrous basis.

The USPNF 20 describes maltitol solution as an aqueous solution of a hydrogenated, partially hydrolyzed starch. It contains, on the anhydrous basis, not less than 50% w/w of D-maltitol ($C_{12}H_{24}O_{11}$) and not more than 16.0% w/w of D-sorbitol ($C_6H_{14}O_6$). See also Section 18.

5 Structural Formula

See Section 4.

6 Functional Category

Suspending agent; sweetening agent.

7 Applications in Pharmaceutical Formulation or Technology

Maltitol solution is used in oral pharmaceutical formulations as a bulk sweetening agent, either alone or in combination with other excipients, such as sorbitol. Maltitol solution is also used as a suspending agent in oral suspensions as an alternative to sucrose syrup since it is viscous, noncariogenic, and has a low calorific value. It is also noncrystallizing and therefore prevents 'cap-locking' in syrups and elixirs.

Maltitol solution is additionally used in the preparation of pharmaceutical lozenges⁽¹⁾ and is also used in confectionery and food products.

8 Description

Maltitol solution is a colorless and odorless, clear viscous liquid. It is sweet-tasting (approximately 75% the sweetness of sucrose).

9 Pharmacopeial Specifications

See Table I.

Table 1: Pharmacopeial specifications for maltitol solution.

Test	PhEur 2002	USPNF 20
Identification	+	+
Characters	+	
Appearance of solution	+	
Conductivity	+	
Reducing sugars	+	+
Chloride		≤0.005%
Sulfate		≤0.01%
Lead	≤0.5 ppm	
Nickel	≤1 ppm	_
Heavy metals	_ ``	≤0.001%
Water	15.0-32.0%	≤30.0%
Residue on ignition	-	≤0.1%
Maltitol (dried basis)	≥50.0%	≥50.0%
Sorbitol (dried basis)	≤8.0%	≤16.0%

10 Typical Properties

Boiling point: 105 °C Flash point: >150 °C Density: 1.36 g/cm³ at 20 °C

Heat of combustion: 10.0 kJ/g (2.4 kcal/g)

Osmolarity: the osmolarity of an aqueous maltitol solution is similar to that of a sucrose solution of the same concentration. A 10% v/v aqueous solution of *Lycasin 80/55* (Roquette) is iso-osmotic with serum.

Refractive index: $n_D^{20} = 1.478$

Solubility: miscible with ethanol (provided the ethanol concentration is less than 55%), glycerin, propylene glycol, and water. Insoluble in mineral and vegetable oils.

Viscosity (dynamic): maltitol solution is a viscous, syrupy, liquid. At 20 °C, a solution of *Lycasin 80/55* (Roquette) containing 75% of dry substances has a viscosity of approximately 2000 mPa s (2000 cP). With increasing temperature, the viscosity of a maltitol solution is reduced; *see* Figure 1. The viscosity of maltitol solutions also decreases with decreasing concentration of dry solids, at a constant temperature. Maltitol solution may also be mixed with sorbitol solution to obtain blends of a desired viscosity.

11 Stability and Storage Conditions

Maltitol solution is stable for at least 2 years at room temperature and pH 3–9. Following storage for 3 months at 50 °C, maltitol solution at pH 2 underwent slight hydrolysis (1.2%) and became yellow colored. At pH 3, and the same storage conditions, no color change was apparent although very slight hydrolysis occurred (0.2%). At pH 4–9, no hydrolysis occurred although a very slight yellow color was formed under alkaline conditions. (2)

Figure 1: Viscosity of maltitol solution (*Lycasin 80/55*), containing 75% of dry substances, at different temperatures.

Formulations containing maltitol solution should be preserved with an antimicrobial preservative such as sodium benzoate or a mixture of parabens. Maltitol solution is noncrystallizing.

Maltitol solution should be stored in a well-closed container, in a cool, dry place.

12 Incompatibilities

13 Method of Manufacture

Maltitol solution is prepared by the hydrogenation of a highmaltose syrup that is obtained from starch by enzymatic hydrolysis. The maltitol solution produced from this process consists of the hydrogenated homologs of the oligosaccharides contained in the original syrup.

14 Safety

Maltitol solution is used in oral pharmaceutical formulations, confectionery, and food products and is considered to be less cariogenic than sucrose. (3-6) It is generally regarded as a nontoxic, nonallergenic, and nonirritant material. However, excessive oral consumption (more than 50 g daily) may cause flatulence and diarrhea.

The WHO, in considering the safety of maltitol solution, did not set a value for the acceptable daily intake since the levels used in food to achieve a desired effect were not considered a hazard to health. (7,8)

LD₅₀ (rat, IP): 20 g/kg⁽⁹⁾

15 Handling Precautions

Observe normal precautions appropriate to the circumstances and quantity of material handled.

16 Regulatory Status

Accepted for use in confectionery, foods, and nonparenteral pharmaceutical formulations in Europe and the USA.

17 Related Substances

Maltitol; sorbitol.

18 Comments

Hydrogenated glucose syrup is a generic term used to describe aqueous mixtures containing mainly D-maltitol, along with D-sorbitol and hydrogenated oligosaccharides and polysaccharides. Such mixtures can vary widely in their composition and hence physical and chemical properties. Products containing up to 90% of maltitol are usually known as maltitol syrup or maltitol solution. Preparations containing a minimum of 98% of maltitol are designated maltitol.

19 Specific References

- 1 Grenby TH. Dental properties of antiseptic throat lozenges formulated with sugars or Lycasin. J Clin Pharm Ther 1995; 20: 235-241.
- 2 Roquette. Technical literature: Lycasin the sweetener for sugarless pharmaceuticals. 1993.
- 3 Frostell G, Birkhed D. Acid production from Swedish Lycasin (candy quality) and French Lycasin (80/55) in human dental plaques. *Caries Res* 1978; 12: 256–263.
- 4 Grenby TH. Dental and nutritional effects of Lycasins replacing sucrose in the diet of laboratory rats. *J Dent Res* 1982; 61: 557.
- Würsch P, Koellreutter B. Maltitol and maltotriitol as inhibitors of acid production in human dental plaque. *Caries Res* 1982; 16: 90– 95.
- 6 Havenaar R, Drost JS, de Stoppelaar JD, et al. Potential cariogenicity of Lycasin 80/55 in comparison to starch, sucrose, xylitol, sorbitol and L-sorbose in rats. Caries Res 1984; 18: 375–384.
- 7 FAO/WHO. Evaluation of certain food additives and contaminants: Thirty-third report of the joint FAO/WHO expert committee on food additives. World Health Organ Tech Rep Ser 1989; No. 776.
- 8 FAO/WHO. Evaluation of certain food additives and contaminants: Forty-sixth report of the joint FAO/WHO expert committee on food additives. *World Health Organ Tech Rep Ser* 1997; No. 868.
- 9 Sweet DV, ed. Registry of Toxic Effects of Chemical Substances. Cincinnati: US Department of Health, 1987.

20 General References

Le Bot Y. Lycasin for confections. Manuf Confect 1983; (Dec): 69-74.

21 Author

X Duriez.

22 Date of Revision

5 March 2002.